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We consider the types of critical cases arising in the general equations of a hol- 
onomic scleronomous system in independent coordinates. We examine the sys- 

tem’s first-approximation matrix and we study the elementary divisors correspon- 
ding to this matrix. We prove a theorem on the stability of the trivial solution 
in one specific critical case when we use a function which is sign-definite in a 

part of the variables. After Liapanov’s original work 1,2 the critical cases in the 
general problem of stability of motion were considered in [S]. The algebraic 

unsolvability of stability problems in sufficiently complex critical cases was 

pointed out in [4]. 

1. Suppose that we are given the general equations of motion on a holonomic scler- 
onomous system in independent coordinates 

d 8T aT _y- 
dt 8qi 

%=Qi (i=I,...rn) (l-1) 

The system’s kinetic energy is T = (q’)‘Aq’ / 2 f (q’)‘A (q) q’, where A is a constant 
positive-definite matrix (A > O).The elements of the matrix A(q) are analytic in the 
components of vector q, A (0) = 0. The prime denotes the transpose. Let q = q’ = 0 
be the equilibrium position. By assuming the generalized forces Qi to be stationary, 

system (1.1) can be rewritten as [S] 

dxldt = y, dyldt = Qx + Ly + y (z, Y> (1.2) 

(q = 3. 4’ = Y) 

where Q, L are constant matrices; the components of the vector Y (5, y) are analytic 

and of not lower than second order. 
The first-approximation is 

p=lii fl (4.3) 

where E is the unit matrix. The matrix P is of even order. We investigate the possibi- 

lity of appearance in the spectrum o (P) of matrix P of zeros or of pure imaginary 
numbers, depending on the properties of the matrices Q, L. We study the corresponding 
types of elementary divisors. Without loss of generality the matrix Q (or L) is taken as 
having been reduced to a canonic Jordan form. Using the matrix equality 

we can obtain the matrix’s characteristic polynomial f (X) 
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f(n)=(-l)ndetIIQ+xL--2EII 

After simple manipulations [6] the matrix P - XE takes the form 

II 

E 0 

0 QfxL-+E II 

(1.4) 

(4.5) 

On the complex plane we consider the sets 

@={z:Imz=O, -oo<<ez<O} 

h={z:Rez,(O}, 9={z:Rez=O} 

Theorem 1. 1. The number of zero eigenvalues of matrix P is not less than the 

number of elementary divisors of the matrix Q - hE, corresponding to the zero eigen- 
values of the matrix Q. 

2. Suppose Q = 0, L # 0 and let A’, . . . . A” (g times). (A - I#, . . . . (h - hr)‘? 
(T times) be the set of elementary divisors of the matrix L - hE (I + . . . + k = m, 

m + p1 i . . . + pp = n).Then the elementary divisors of the matrix P - ICE are 

x, . . . . x (n - g times), xt+l, . . . . Xktl (g times), (x - &)pl, . . . . (x - Ibr)Pr (r 
times). 

3. SupposeQ# 0, L = 0, (T (Q)n@ = @and leta’, . . . . A” (gtimes),@ - hr)~l, 

. . . . (a - &)Pf( r times) be the set of elementary divisors of the matrix Q - aE (1 + 

. . . + k = nl, m + p1 + . . . $ pT = n). Then the elementarv divisors of the matrix 

P - s&are x2’, . . . . @(g times), (x + i f+ ap, (x - i vwXl)pl, . . . . 
(X + iv---hr)“‘, (3.~ - iv _hr)4 (2r times). 

4. SupposeQ = L = 0. h T en the elementary divisors of the matrix P - xE are 

x2, . . . . x2 (n times). 
Proof. 1. The matrix Q is considered reduced to a Jordan form. We examine the 

equality 
Q+xL-GE= 

PII PlZ(X) 

P?l (x) Pz(x) II 
(1.6) 

where the square matrices P,, (x), h (x) correspond, respectively, to the elementary 
divisors ?.r, . . . ., hk (g,times), and 0. - hl)P1 , . . . , (1 - A,)*, (r times) of the matrix 
Q - LE. We use the relation 

where the summation extends over all permutations I-X of the set of all permutations of 

the integers from one to n, where clip (~1 is the element of the matrix I( Q + XL - x2E I( 

at the intersection of the i--th row and the i -th column. From (1.7) and from the 

form of the matrices P,, (x), Paa (x) it follows that the polynomial f (x, does not contain 
terms with x to a power less than g. 

2. The matrix L is assumed reduced to a Jordan form. We examine the matrix (1.5) 
under the conditionQ = O.Considering [7] we obtain the desired set of elementary divi- 
sors after a union of the elementary divisors of h- X k andpr >: prmatrices of the type 

--x2 3c . . . 0 x&--x2 x . . . 0 

0 --x2... 0 0 xh7-xx" . . . 0 

. . . . . . . . . 

0 o... x 0 0 . . . Y. 

0 o...--2 0 0 . . . ?&--x2 
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It is clear that x9 . . , x (k -- 1 times), &+l form the set of elementary divisors of the 
first matrix; x, . . . , x (p,. times), (X - A,)‘, form the analogous set for the other matrix. 
In system (1.3) a critical case is possible only when c (L) E A. 

3. The matrix Q is assumed reduced to a Jordan form. We examine the matrix (1.5) 

under the condition I, :- 0. We obtain the desired set of elementary divisors after a union 
of the elementary divisors of h- x k and pr X pr matrices of the type 

-9 1 . . . 0 n, --Xx” 1 . . . 0 

0 -X2 ,.. 0 0 &.-XX . . . 0 

. . . . . . . . . . . . 7 
0 0 . . . 1 0 0 . . . 1 

0 0 . . . --x2 0 0 . . &.---X2 

where nzk is an elementary divisor of the first matrix. The elementary divisors of the 
second matrix are obtained after a decomposition of the polynomial (A, - x?)~’ into 
factors irreducible in the complex number field. If Ar E o (Q) and h, e& 0 ,then a simple 

analysis indicates that among the elementary divisors we can find a corresponding root 
with positive real part of the equation / (K) = 0. In this case the solution cz z 0 is unstable. 
If CT ((1) n 0 = 0, then the decomposition of the polynomial into irreducible factors 

yields (~+il/~)~p, (r- - i1/_-h,,‘.“. 
4. The validity of the item 4 of the Theorem is obvious. 
We study the particular cases of the action of forces of various types on a scleronom- 

ous system. 
Gyroscopic forces of the formQi = yilql + . . . 4 Yinqn.The matrix I? = 

II Y..II r1 rnis necessarily skew-symmetric. For system (1.2), Q = 0, L = A-lI’. It is pro- 
ved that o (il-'lJ f3 a.The scalar product of vectors is defined by the formula U-U = 

u,lr,-+ . . . + u,v, (the overbar denotes the complex conjugate); rue u $ rii. 11 = 0 
for any u because I’ =; -I?‘.If rz is an eigenvector of the matrix A -ir,corresponding 
to an eigenvalue A. thenru = AAn.Since hAu*u 3_ hA~2.2 =0 andAu*u=Ati.ii#O, 

we have h i_ 7 0. On the basis of item 2 of Theorem 1, (5 (P) E CZ.The matrix 
fl-ir must be skew-symmetric for the matrices A -I and r to commute. It possesses 
linear elementary divisors in the complex number field. The elementary divisors of the 

matrix P - xE are of the types 3c, 1c2,(x + ia), (x - ia) (a > 0). If, moreover, 
det 1’ -+= O,then elementary divisors of the types X, (x + ice), (x - ia)correspond to 
the matrix P, 

Dissipative forces Qi = -(bilql’ + . . . + bi,,qn’), B = 11 bij IJln > 0. 
Here Q = 0, L=-A -lB. We have o (--A -‘B)s 0. Indeed, if u is an eigenvector 

of the matrix -_il -lB, corresponding to an eigenvalue a, then 

h = -Bu.u/Au.u 

We obtain what is required since A U. u > 0, BU * u > 0. The spectrum rs (P) consists 
of negative numbers and zeros. The matrix (--/I -lB) must be symmetric for the matrices 
A-l and B to commute. It possesses linear elementary divisors in the complex number 
field. Elementary divisors x, x2, (x + a) (a > 0)correspond to the matrix P . If, 

moreover, det B =/= 0, then the elementary divisors of P - xE are simple. 
Potential forces Qi -=- -811 / dqf,where 

IYl = + ibijqiqj, ll>,O 
i, i 
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The system is conservative. Here Q I= --A-‘B, L = 0. The proof of the algebraic 

fact cJ (--A -lB) E 0 is obtained also from mechanical considerations. We select an- 

alytic functions ‘Ic) (Q) (of not lower than third order) such that the potential energy II -/- 

I$ (q) reaches a strict minimum when q = 0. We obtain what is required by using Lag- 

range’s stability theorem and item 3 of Theorem 1. We can assert that in case A-’ and 

B commute and det B $1 0 1' mear elementary divisors of the types (X + ia), (x - ia) 
correspond to the matrix P . 

2, In the system of Eqs. (1.2) we assume Q = 0, v (z. 0) 3 c). Then (1.2) admits 

of the solution 
x G c, !J = 0 (2.1) 

where c is a constant vector. The vector c is said to be admissible if its Euclidean 

norm 1 c 1 is sufficiently small. For system (1.2), 

V (2, E/) = y (x) y + v* (2, E/J 

The components of the vector v* (z, y) are of not less than second order in y and 

Y (0) = L. 
Theorem 8. If Q = 0, v (x, 0) ES 0, and the matrix Y (c) == I/ gij (c) p, 

is a Hurwitz matrix, then the solution (2.1) is Liapunov-stable. 

Proof. Let ,IQ (~1 denote linear forms satisfying the equations 

i 
‘Pi 

[Y,l (c) Yl + * . + lljlL (c) ?/,,I - - ayj - yi (i = 1, . . 12) (E.2) 
I=1 

System (2.2) is solvable because tl~t Y (vi =#= 0. After the change of variables x = ; + 

P (1/J + c 9 the initial system becomes 

d;i ctt= ; (C. y), Cl&/ ,’ dt : Y (c) y + v- (;, y) (2.X) 

2“ (i, y) := v:x (5 + p (y) + c, !/I $-, [I’(< -i_ p (!/) -t- cl - Y (c)ill 

al-1 (Y) 
; (;, !I) = - 2 q (5, Y) “!/, 

j=l 

The vectors v (5. f/), : (6, y) are of not less than second order in c, !/.The trivial solution 

of system (2.3) is stable [l] because < (i, 0) E Cl. vc (<. (“1 f O.and k (c, is a Hurwitz 

matrix. 

The stability theorem for the trivial solution can be formulated also for the more gen- 

eral system of equations 

(2.4) 

where rl’ and !/ are s and I!-dimensional vectors. The components of the vector 

E (x. ~/)are analytic in r/‘. !I; ; (n. 0) _= 0. System (‘2.4) admits of solution (2.1). If 

solution (2.1) is stable, then for any (small) e > 0 we can find a number set X, (c) 

possessing tile property: let a c X, (f): from 1 x (0) - C 1 < a. i y (0) I< a follows 

1 .z (f) -- c 1 < t‘, / y (I) 1 < F. (I > 0). The. set X, (c)is contained on the segment 

IO. el; s (3.O. I/) = {,)‘I 1 II: - 3.O / h} is a sphere of radius h with center a: zO. 

Lemma. Let solution (2.1) be stable for any admissible c . Then, for sufficiently 

small 11, E we can ficd a number 1; ‘_ 0 such that 

inf 
.i&>< (0, h) 

sup XE (x)) p 
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Proof. We assume the contrary. Then there exists a sequence (2”) (9 E S (0, h)), 
such that lim [sup X, (se)] = 0. The set S (0, h) is closed (in the Euclidean metric), there- 
fore, hm ze r Z* E S (0, hl as e - w.The solution x E x*, y E 0 is stable; for E > 0 we 
can find y > 0 smaller than e, such that from 

Ix (0) -x* I < 7, I Y (0) I < 7 
follows 

I 5 w - ix* I < 8, I Y (4 I < I? (for t >O) 

In its own turn, for y we can find a number q > 0 such that from 

15 (0) -CT* I < 719 lY@) I< q 

follows 

lx PI --"*I<r, I Y (4 I < T (for t>O) 

By choosing the number N sufficiently large we can ensure the fulfillment of the relati- 
ons 

I 2 --*I <q/2, s (XC, q /2) c s (s*, 111 

s (s*, ?‘) C s (Xe, E), e>N 

Therefore, for any e > N from 

I 5 (0) -xr’I<q12, I Y (oi I < q I 2 

follows 1 x (t) - xe ( < a, IY (t)-l < a (for t > 0), i.e. , sup X,(s3>B/2 for e > N.The 
contradiction proves the lemma. 

Theorem 3. Let solution (2.1) be stable for all admissible c ; let there exist a 
y -positive-definite function V (y) such that V’ (se4) < 0. Then the trivial solution of 

system (2.4) is stable. 
Proof. Let P =xE;;fr,a) aup X,,s (x) 

On the basis of the lemma, B # 0. For j? we can choose 6 > 0 such that l~l (r)l < b 
follows from the condition 

Ix(O)I<6 I Y (0) I < 6 

for all t> 0 for which 1x (t)] < E / 2. The possibility of choosing 6 is stipulated by the 
sign-definiteness of V (y) and the negativeness of V’ (2.4)(for all I from a sufficiently 
small neighborhood of zero). 

Therefore, even if the representative point leaves the spheres (0, E / 2),it does so only 

owing to the r coordinate. But then for some t* we have 11~ (t*)l = E ! 2 and 1~ (t*)l < B, 
The solution x s 5 (t*), y E 0 is stable. From the meaning of the number B follows 
Ix (4 < F. I y (t)l < E / 2 ( 8 for t> t*. 

Theorem 3 must be applied to the study of the stability of the trivial solution of the 
system of equations 

dxldt = Y + x (z, y, z), dy’yidt = 2, (2, y, z) 

dzidt = Gz + 5 (x, y, z) (2.5) 

where 2, u, x (n. !/, z), v (LT., y, zj are s-dimensional vectors and z, 5 (5, y, Z) 
are n -dimensional vectors: G is a Hurwitz matrix. Liapunov had made a detailed in- 
vestigation of (2.5) for .s = 1. We can easily point out examples of matrices, equiva- 

lent to matrices of type (1.3), in the class of first-approximation matrices of system 
(2.5). Certain of Liapunov’s results were carried over in [8 - lo] to the case s > 1 under 
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the assumption v (z, 0, 0) 3 0. Without loss of generality, X (5, 0. 0) = 0, 
ca(s, 0, 0) f 0, Y (5, 0, Z) z 0. System (2.5) admits of the solution x = c, y = 0, 
z = 0. Under certain assumptions theorems analogous to Theorems 2 and 3 can be form- 
ulated for (2.5). 

The author thanks V.V. Rumiantsev for valuable advice. 
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